Perspectives from USDA research.... Hot Feedstocks for SAF.

William Orts
USDA Western Regional Research Center

Our USDA Research Mission:

Add value to agricultural products to help the rural economy

Agricultural Research Service

USDA's chief scientific research agency

1,800 PhD-level scientists

120+ research locations

ARS is the in-house research arm of the USDA.

USDA Western Regional Research Center

The Center has ~350 people,

~45 in bioproducts & biofuels.

We partner with companies and industry groups to take bioproducts to market.

Partnerships:

Providing viable solutions to the industry is a primary mission driver

CLARIANT

We partner with companies and industry groups to take bioproducts to market.

USDA Projects: Biorefinery Development

Mission: 2020-2025

- 1. Bioproducts and Biopolymers from Ag Feedstocks
- 2. Zero Waste Agricultural Processing
- Domestic Production of Natural Rubber and Resins

Biomass-degrading enzymes: cloning, characterizations, engineering

- Constructed and screened metagenomic DNA libraries
- ❖ Designed new high-throughput discovery assays
- ❖ Developed new expression reagents
- ❖Isolated >40 novel genes
- ❖ Executed >60 MTAs

USDA - Partnerships

USDA research on biomass conversion to SAF

Conversion of Biobased Materials into Chemicals and Fuels and Electroactive Materials

Kenneth M. Doll, Ph.D. USDA, ARS, NCAUR, Bio-Oils Research – Peoria, Illinois kenneth.doll@usda.gov (309) 681-6103

- Lead Scientist and with a PhD in organic chemistry
- Experience in the chemical modification of vegetable oils and agricultural products into value-added industrial products
- Multiple vegetable oil-based chemical derivative families
- Decarboxylation technology for polymer and fuel use
- Publication of ~100 peer-reviewed publications and U.S. patents (ORCID: 0000-0002-5328-7848)

Proximate isomers exhibit facile decarboxylation

Research on biobased lubricants

- New evaluation of lubrication methods
- Additives based on boron or phosphorous in combination with vegetable oils

Decarboxylation of fatty acids

- Mechanistic study
 - Isomerization-based mechanism
- Multiple catalysts
 - Ruthenium
 - Osmium
 - Iridium
- Renewable jet fuel from vegetable oils
- Composition mimics conventional jet fuel

Introduction

Conversion Technologies:
End-products

Collection & storage

- In the past, funding did not necessarily focus on the need for infrastructure.
- Hot feedstocks ⇔
 - Crop residues
 - Energy crops specifically grown for biofuels
 - Food/Ag-processing wastes.
 - Gathered biomass sources -- landfills, wastewater treatment facilities,
 MRFs,Wherever there's biomass
- There is no single answer Solutions will be regional, smaller.
- Collaboration across industries, academia and government will be essential.

Energy Policy: The way things were supposed to be.....

Renewable Fuel Standard-2 (RFS2). It's the law!

36 billion gallons/year by 2022

Biofuels Technology	2020 Statutory*	2020 Final	
Corn grain ethanol Biomass – Biodiesel	15* 1.5	13.8 2.4	
Advanced biofuels	12	5.1	Need to
Cellulosic biofuels	10.5	0.6	catch up!
Total biofuels	30++	21.9	

^{*} Targets are adjusted yearly.

Crop residues to feed biorefineries

ISSUES:

Straw varies with seasons
Aging ⇔ harvest time is once per year
Moisture and storage are challenging
Transportation ⇔ Low density
Supply is not near highest demand.

Purpose-Grown Energy Crops

Sorghum

- Bioconversion ?1?
- How to convert this complex lignocellulosic crop to useful pulp?
- Seasonality???

Miscanthus

Switchgrass

- Storage Who stores it?
- Seeds How do we create a sustainable crop "industry"?
- Who "fights" for this crop?

Arundo Donax

Almond Trees Produce Three Co-products

California's cows happily eat almond co-products

But lately, due to drought, changes in markets, land costs, etc.

There are fewer cows and lots more almonds....

Agricultural Coproducts & Residues

California produces 82% of the world's almonds, resulting in nearly 1.5 billion pounds of shells annually.

Should we make fuel ethanol from almond hulls?

Sugars in Almond Hulls

	% Sucrose	% Glucose	% Fructos	% Fermentable sugars	% Xylose	% Inositol	% Sorbitol	% Total sugars
Non- Pareil	3.84	17.61	15.04	36.49	1.03	2.36	4.37	44.24
Butte/ Padre	0.38	12.87	12.55	25.80	0.77	0.99	2.84	30.40
Cali- fornia	0.14	6.79	3.53	10.46	0.64	1.89	1.76	14.75

Almond Hulls vs. Sugar Beets

Almond Hulls 30-35% sugar

Sugar Beet Cossettes 15-20% sugar

Integrated Ethanol Plant

Ethanol Production from Hull Sugars?

Raw Feed	\$/ton	% sugar	Sugar (lbs)	Ethanol (gal)	\$/gal Ethanol
Corn kernels	132		1286	95	1.38
Sugar beets	39	18.5	370	27	1.42
Molasses (feed)	180	79.5	1590	118	1.52
Sugar cane	39	14	280	21	1.88
Almond hulls	150	31	624	40	3.83

Should we make fuel ethanol from almond hulls?

What about the shells?

Torrefaction ⇔ Charcoal Production

Processing Temperature

Torrefaction

Densifies the biomass

Removes moisture and volatiles

Torrefied Almond Shells in Recycled Plastics

Integrated Biorefinery Based on MSW and AgDerived Biomass

U.S. Population Density

U.S. Oil Refineries

U.S. Ethanol Plants: Biorefineries

Landfills and their Methane Potential

Location of methane production at landfill point sources in continental U.S. (SCFY)¹

Autoclaving solid waste

- Pressurized hot water treatment.
- Reduces volume.
- Isolates recyclables.

Figure 4. Percentage composition of MSW fiber produced on the Wilson Bio-Chemical Pilot Autoclave. (Dornau et al., 2019).

Salinas Crazy Horse Landfill

Two-ton batch autoclave, Salinas, CA

Conveyor loading MSW to autoclave

MSW in the autoclave prior to treatment

MSW after steam treatment

Post-autoclave MSW sorting

Trommel Screen Side View

Trommel Screen Front

Fiber from MSW after centrifugal cleaners

Cellulose from autoclaved MSW

Processed paper from recovered fiber

Kevin Holtman - USDA

One life-cycle analysis published in Science (May 8, 2008), concluded that bioelectricity produces an average 81% more transportation kilometers and 108% more emissions offsets per unit area cropland than cellulosic ethanol through either production of electric cars or through use of liquefied biomethane.

Compressed Biomethane vs Ethanol

Ethanol

Achieve 70 gallons per mt of autoclave pulp product (dry basis).

Biomethane

- Achieve 428 mL CH₄/g VS with MSW pulp.
- 99 diesel equivalent gallons per mt of autoclave pulp product (dry basis).
- 155 ethanol equivalent gallons per mt of autoclave pulp product (dry basis).

Bioethanol Proof of Principle

 First drop of Bioethanol from Municipal Solid Waste - August 2022

Methane: Potent greenhouse gas!!

Carbon Intensity: Carbon markets are coming....

Fuel	Pathway	Carbon Intensity Values (gCO ₂ /MJ)		
		Direct Emissions	Indirect/ Land Use Emissions	Total
Gasoline	CARBOB –Avg. California refinery	95.9		95.9
Corn Ethanol	Midwest Dry Mill; Wet DGS; 80% NG; 20% Biomass	56.8	30	86.8
Corn Ethanol	California Dry Mill; Dry DGS; 80% NG; 20% Biomass	54.2	30	84.2
CNG	California NG via pipeline;	67.7		67.7
CNG	Landfill gas (bio-gas) cleaned to pipeline quality.	11.3		11.3
CNG	Dairy Digester Gas, cleaned to pipeline quality.	13.5		13.5
(http://www.arb.ca.gov/fuels/lcfs/121409lcfs_lutables.pdf)				

Natural Gas vs Oil Prices

Note: Oil prices have been converted to dollars per million BTU for ease of comparison.

Sources: Wall Street Journal, U.S. Energy Information Administration, Atlanta Fed calculations

http://farmdocdaily.illinois.edu/2011/11/trends_in_crude_oil_and_natura.html

PHA Biorefineries: PolyHydroxyAlkanoates

properties similar to polypropylene

Methanotrophs producing P(HB-co-HV)

 PHA is produced when excess carbon is present and/or when a key nutrient is limiting

Balanced growth conditions

Carbon excess and/or nutrient deficiency; PHA granules begin to form

Daniel et al (1992)

- Type II methanotrophic bacteria produce PHA.
- Strain, Methylocystis sp. WRRC1 was capable of producing a wide range of polyhydroxybutyrate-co-hydroxyvalerate copolymers (PHB-co-HV) when co-fed methane and valerate or n-pentanol.

Methane gas emissions

Microbial process

Biodegradable products

PHA biopolymer

PHA fibers from Ag-Wastes

Conclusions/ Comments

- Building biorefineries does not require us to build from scratch
 - Biorefineries are originally grain mills, but also could be<⇒
 - Landfills, wastewater treatment facilities, MRFs
 - Large food processing plants
 - Anywhere there's biomass
- Low hanging fruit ⇔ biomass that has already been collected.
- Better ⇔ biomass that has no "higher use"
- Better yet ⇔ biomass that "they pay you to take"
- Methane! Don't release methane as a greenhouse gas
- Multi-institutional collaboration across industries, agencies and regulators will be essential.

Industrial Collaborators

Researchers: Biorefinery Team

Gregory Glenn Colleen McMahan Charles Lee William Hart-Cooper De Wood Bor-Sen Chiou **Dominic Wong Lennard Torres Tina Williams** Zach McCaffrey **Trung Cao Andrew Cal** Dirk Sikema Kevin Holtman Diana Franqui David Bozzi Richard Offeman William Orts

Bill.Orts@USDA.GOV

William Orts ⇔ 510-559-5730 bill.orts@ars.usda.gov