FEEDSTOCK READINESS LEVEL (FSRL) TOOL The Feedstock Readiness Level (FSRL) Tool and companion Commerical Aviation Alternative Fuels Inititive® (CAAFI®) Fuel Readiness Level (FRL) Tool. The FSRL Tool provides a means of tracking progress of new feedstocks towards established production in the commercial sector that are linked to commercial-scale biofuels production - towards the creation of a complete supply chain. The FSRL Tool is comprised of four components: (1) Production, (2) Market, (3) Policy - Program Support and Regulatory Compliance, and (4) Initiage to Conversion Process. The Four FSRL Tool components are including the readiness of the biofuel conversion process. The Four FSRL Tool components are including the readiness of the biofuel conversion process. The FSRL Tool provides a means of tracking progress of new feedstocks and Regulatory Compliance, and (4) Initiage to Conversion Process. The FSRL Tool provides a means of tracking progress of new feedstocks towards established production in the FSRL Tool provides a means of tracking progress of new feedstocks towards established production in the FSRL Tool provides a means of tracking progress of new feedstocks towards established production in the FSRL Tool provides a means of tracking progress of new feedstocks towards established production in the FSRL Tool provides a means of tracking progress of new feedstocks towards established production in the FSRL Tool provides a means of tracking progress of new feedstocks towards established production in the FSRL Tool provides a means of tracking progress of new feedstocks to a complete supply class of the FSRL Tool provides a means of tracking progress of new feedstocks to a complete supply class of the FSRL Tool provides a mean of tracking progress of new feedstocks and the FSRL Tool provides a mean of tracking progress of new feedstocks and the FSRL Tool provides a mean of tracking progress of new feedstocks and the FSRL Tool provides and the FSRL Tool provide | Fuel Readiness Level (FRL) | | | | Feedstock Readiness Level (FSRL) | | | FSRL Components with Tollgates | | | | |----------------------------|---|--|--|----------------------------------|-------|---|--|---|---|--| | FRL Scale | Description | Fuel Testing and
Certification | Tollgate | Activity | Scale | Description | (1) Production | (2) Market | (3) Policy - Program
Support and Regulatory
Compliance | (4) Linkage to
Conversion Process | | 1 | Basic Principles | | Feedstock and process
basic principles
identified | tion | i | Basic Principles | Identify potential feedstock
for a specific conversion
technology | Identify current feedstock
producers, feedstocks and
coproduct users, and wastes | Identify regulatory requirements to producing a new feedstock | Identify potential
conversion technology to
utilize feedstock | | 2 | Concept Formulated | | Feedstock and complete process identified | Preliminary Feedstock Evaluation | 2.1 | Concept Formulated | Estimate likely range of
production environments
and competing land uses | Assess feedstock market alternatives | Evaluate feedstock for compliance with regulatory requirements for likely production environments Estimate production impacts | Test feedstock quality for specific conversion technology | | | | | | | 2.2 | | Identify production system components | Identify potential coproducts | on multiple resources
concerns | | | | | | | | 2.3 | | Develop enterprise budget
for potential feedstock | Identify waste disposal requirements | Formulate a plan including
best practices to address
regulatory requirements | | | | | | | | 2.4 | | Identify possible
consequences of expanded
production, articulate
responses to trade-off's | Identify harvest method,
post-harvest collection,
transportation, and storage
logistic options | Comply with any feedstock
pre-importation regulations | | | 3 | Proof of Concept | | Small fuel sample
available from lab -
basic fuel properties
validated | resting | 3.1 | Proof of Concept | Screen candidate genetic
resources for feedstock yield | Estimate feedstock production costs | Determine potential for
societal resistance to use of
the candidate feedstock | Test feedstock in conversion process at the experimental bench-scale | | | | | | | 3.2 | | Screen candidate genetic
resources for biofuel
conversion potential | Evaluate current and
alternative future scenarios
for establishing a feedstock
sector - feasibility study | Formulate a plan to address
societal concerns | | | 4.1 | Preliminary Technical
Evaluation | Preliminary
Specification of
Properties | System performance and integration studies | Feedstock Experimental Testing | 4.1 | Preliminary Technical
Evaluation | Perform coordinated
regional feedstock trials to
determine potential for
yield improvement and
dependability of feedstock
supply | Identify biorefiners for
targeted feedstock market
development and link
feedstock producers to
feedstock brokers to supply
biorefineries | Identify Federal, state, or other special incentive programs § | Performance estimated
for feedstock through a
conversion process | | 7.2 | | | | Feedstock E | 4.2 | | Compare performance of
candidate feedstock with
alternative feedstock
choices | Identify specific alternatives
for reducing production and
supply uncertainties (i.e.,
contracts and loan
guarantees) | Develop conservation plan to
address resource concerns
for a feedstock production
system | Determine conversion
efficiency and unique
effects on fuel propertie | | 4.2 | | | Entry
criteria/specification
properties evaluated | | 4.3 | | Implement agricultural
extension and education
programs to promote
feedstock production | Implement education
programs to establish
interest in production and
demand for feedstock
purchase | Draft NEPA (EA or EIS) and other required permitting documents | Co-product production and utilization performance estimated | | 5.1 | Process Validation | | Laboratory production development | Feedstock Assessment | 5.1 | Production System
Validation | Define range of adaptation
for feedstock and identify
production uncertainties | Develop and refine post-
harvest logistics and storage | NEPA documents,
conservation plan, and other
required permit applications
submitted | Pilot-scale testing | | 5.2 | | | Subscale production demonstrated | | 5.2 | | Conduct on-farm, field-scale
production cost trials and
assess production impacts
on resource concerns | Assess maximum market potential for feedstock and coproducts | NEPA documents,
conservation plan, and other
required permit applications
approved | | | 5.3 | | | Scalability of
production
demonstrated | | 5.3 | | Establish partial budget
costs and returns | Evaluate waste disposal and other costs | Prepare and submit service program applications | Scaled-commercial testing pplications syments | | 5.4 | | | Pilot plant capability enabled | | 5.4 | | Establish price points for
feedstock market
competitiveness with
competing land uses | Develop feedstock offtake
options and pathways to
realizing market potential | Service program applications
approved and payments
received | | | 6.1 | Full-Scale Technical
Evaluation | Fit-for-Purpose
Properties - ASTM
Balloting Process | Fit for purpose properties evaluated | commercial Fe | 6.1 | Full-Scale Production
Initiation | Establish source material
nurseries and begin
feedstock production scale-
up process | Ancillary service providers apply knowledge gained to advise producers and other supply chain participants | All regulatory compliance is complete | Performance confirmed
for feedstock conversion
and effects on fuel
proper for and
components | | 6.2 | | Component/Rig Testing | Turbine hot section
testing | Pre-com | 0.1 | | | | | | | 6.3 | | OEM Review and
Approval | Component/rig/emissions testing | o
- | 6.2 | | Produce feedstock planting materials to meet demand | Determine feedstock
production capacity when
linked to market outlets -
price and quantity | | | | 6.4 | | Engine/APU Testing -
ASTM Research Report | Engine/APU testing | | | | | | | | | 7 | Certification/Fuel Approval (Determine go or no-go) Commercialization Production Capacity Established | Fuel Class Listed in
International Fuel
Specifications | Fuel class/type listed in
international fuel
standards | Feedstock Commercial Deployment | 7 | Feedstock Availability | Commercial-scale production
and feedstock delivery to
conversion facility -
payments made for
feedstock | Utilize risk management
tools to reduce uncertainty
of feedstock production | Continue service program participation as needed | Sustainable full-scale
production of biofuel and
co-products | | 8 | | | Business model
validated for production
go-ahead -
airline/military
purchase agreements
secured | | 8 | Commercialization | On-going monitoring and
research to improve
production system
performance while
managing multiple resource
concerns | Market established - make
necessary adjustments to
the supply chain as the
feedstock market evolves ⁹ | Maintain regulatory compliance and make adjustments as needed | | | 9 | | | Full-scale plant
operational | | 9 | Sustainable Feedstock
Production Capacity
Established | Full array of private services
support feedstock
production sector -
understanding of feedstock
sector evolves - make
adjustments as commercial-
scale biofuel production
expands | Market functions to support sustainable feedstock production | Federal, state, and private
programs function with
minimal disruption from
unintended economic,
environmental or social
consequences | | [†]Examples of considerations for regulatory compliance include pre-importation regulations, invasive species; gene escape;U.S. Environmental Protection Agency Feedstock Certification for greenhouse gas reductions under the Energy Independence and Security Act and Renewable Fuel Standard 2; and U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) conservation plan support. Authors: Jeffrey Steiner, USDA Apricultural Research Service, Belstwille, ND, Kristin Leuis, John A. Volpo, National Transportation Systems Center, Research and Innovitive Technology Administration, U.S. Department of Transportation, Cambridge MA; Harry Baumes, USDA Office of Temper Policy and New Lee, Office of the Childra Computing, DC, 2nd Asthatian Berryon, CFC and Asthatian Administration, U.S. Department of Transportation, Vashington, DC. Version: November 16, 2011 [†] Multiple natural resources concerns include the USDA-NRCS conservation planning framework SWAPAE+H (Soil, water, air, plant, animal, energy, plus human effects). Various decision tools are available to estimate feedstock production impacts on metrics of soil erosion, fuel use, pest risk assessment, and greenhouse gas emissions. assessment, and greenhouse gas emissions. Seminoles of service agency programs include: USDA Farm Service Agency, Biomass Crop Assistance Program (BCAP); USDA-NRCS, Environmental Quality Incentive Program (EQIP); and USDA Risk Management Agency, Crop Insurance Program. ¹ Monitor and analyze market transactions, producer decisions, technical developments, and resources availability.