Case Studies on Variability in LC GHG Emissions of Biofuels

David R. Shonnard

Department of Chemical Engineering, Michigan Technological University, Houghton, MI USA Sustainable Futures Institute, Michigan Technological University, Houghton, MI USA

> CAAFI Environmental Team Workshop January 27, 2014 Airlines for America (A4A) Offices Washington, DC

Sustainable Futures Institute

Case Studies

Data Sources:

- Comparison of LCA Software Platforms on Algae Renewable Diesel LCA (GREET and SimaPro)
- □ Accounting-Allocation:
 - Jatropha Hydro-Renewable Jet (HRJ) LCA in the Yucatan of Mexico (USA RFS and EU RED)
- **System Boundary:**
 - Forest C Stock Changes and Biofuel / Biopower LCA in the UP of Michigan

DATA SOURCES: ALGAE RENEWABLE DIESEL

Algal Biology, Cultivation, Harvest & Extracting, Fuel Conversion, Co-Products, Sustainability

□ Sustainability Team – Economic, Environmental

🗅 Michigan Tech

- Cultivation infrastructure impacts
- Variations to baseline scenario
- New technology (Harvesting, Extracting, Fuel Conversion)
- Alternate co-product uses
- □ Life-cycle assessment (LCA) approach
 - GHG emissions / MJ fuel product

LIFE CYCLE STAGES OF ALGAE BIOFUEL

 \Box Translate inputs (Energy, materials,) \rightarrow environmental impacts

- Baseline inputs, life cycle structure from GREET Model
- □ Hybrid allocation method (Energy / displacement combination)

COMPARISON OF SIMAPRO & GREET MODEL LIFE CYCLE RESULTS FOR RENEWABLE DIESEL

Algae renewable diesel production	GHG emissions (g CO ₂ eq/ MJ)		
ltem	SimaPro	GREET	
CO ₂ procurement	8.2	4.8	
Growth/1 st dewatering	60.9	33.3	
Remaining Dewatering	18.2	8.7	
Extraction	48.6	34.6	
Transport of algal oil to conversion	1.1	0.6	
Fuel conversion	9.6	9.6	
Anaerobic digestion process	25.6	20.9	
Biogas cleanup and transfer of CO ₂ to pond	19.1	9.7	
CHP credit (heat &electricity)	-116.0	-58.6	
Soil application of AD residue	5.8	7.2	
Fertilizer displacement	-4.7	-7.4	
transport to fuel blending	0.5	0.6	
Total	77.0	64.1	

COMPARISON OF SIMAPRO & GREET MODEL LIFE CYCLE RESULTS

Major differences due to electricity

GREET: Electricity sources generated on site

LEA \rightarrow Anaerobic digestion \rightarrow Biogas combustion

□ Different emission factors of US grid electricity

- GREET : e-Grid database - SimaPro: $ecoinvent^{TM}$

COMPARISON OF SIMAPRO & GREET MODEL LIFE CYCLE RESULTS

The U.S. generation mix

Source	GREET		Sima	aPro	Difference between two databases
	Generation Mix	Emissions factor g /kwh	Generation Mix	Emissions factor g /kwh	
Oil	1.0%	1092	3.3%	935	14%
NG	23%	623	17.4%	684	-10%
Coal	46.4%	1120	49.7%	1190	-6%
Biomass	0.3%	102	1%	30.1	71%
Nuclear	20.3%	14.4	19.7%	12.8	12%
Other	9.8%	3.90	8.9%		
Total, stationary use	100%	670.5	100%	751	-12%

COMPARISON OF SIMAPRO & GREET MODEL LIFE CYCLE RESULTS

Algae RD production	g CO ₂ eq/ MJ				
ltem	GREET	SimaPro using Ecoinvent emission factors	SimaPro using GREET electricity emission factor	Remaining difference due to different emission factors of	
CO ₂ procurement	4.8	8.2	4.8		
Growth/1st dewatering	33.3	60.9	35.9	Ammonia/ Nutrients	
Remaining Dewatering	8.7	18.2	9.7	Chitosan	
Extraction	34.6	48.6	34.4	Hexane	
Transport of algal oil to conversion	0.6	1.1	1.1	Transportation	
Fuel conversion	9.7	9.6	9.3	Hydrogen, natural gas	
recovery	20.9	25.6	20.8		
Biogas cleanup and transfer to pond	9.7	19.1	9.6		
CHP credit (heat &electricity)	-58.3	-116	-58.7		
Soil application of AD residue	7.4	5.8	5.8	Transportation	
Fertilizer displacement	-7.4	-4.7	-4.7	Nitrogen, carbon, phosphorus	
Transport to fuel blending	0.6	0.5	0.5	Transportation	
Total	64.1	77.0	68.6		

ACCOUNTING: ALLOCATION METHOD

How do we split the bill? Allocation method for coproducts:

- Energy (simple; Lower Heating Values)
- Mass (Bias with high added-value products)
- Market value (Subject to 'arbitrary' external changes; very dynamic)
- System expansion (Displacement allocation)

Different methods give very different results

Jatropha HRJ in the Yucatan of Mexico Case study: LCA of Green Jet fuel production from jatropha oil

Plantation area: 55,000 ha

Production: 10 ton/ha/a wet seed

(g CO2 eq/MJ of Green Jet) \rightarrow	Fossil				
	Jet*	US DoE	US EPA	EU RED	_
Jatropha Cultivation/Harvest (RMA)	6.8	1.5	7.8	1.8	
Jatropha Seed, Shell Transport (RMT)	1.3	0.5	2.5	0.4	
Combined Seed, Shell, Oil Transport					
Jatropha Oil Extraction		1	5.2	0.2	
Jatropha Oil Transport		0.7	1.3	0.7	US DoE: Energy allocation
GJ Production from Jatropha Oil (LFP)	6	16.4	30.7	14.6	US EPA: Displacement allocation
Combined Oil Extraction and GJ Production					EU RED: Energy allocation; no
Co-Product Credit Extraction Stage			-61.4		credit for electricity
Co-Product Credit GJ Production Stage			-70		cogeneration
Final Product Transport	1				
Fossil Jet Fuel Combustion	77.7				
Direct Land Use Change (dLUC)					
Total	92.9	20.1	-83.9	17.7	
Savings, %		78.4	190.3	80.9	

* From Skone and Gerdes, 2008, Development of Baseline Data and Analysis of Life Cycle Greenhouse Gas Emissions of Petroleum-Based Fuels, DOE/NETL-2009/1346, November 26, 2008. RMA = Raw Material Acquisition,

RMA = Raw Material Acquisition; RMT = Raw Material Transport, LFP = liquid fuel production

CUC Emissions

System Boundary: Biofuels and Bioenergy from Michigan Forest

Figure 1: MI forestland and landownership (in million ha)

Forest growth is 3x harvest removals

Harvesting above current levels could provide biomass for biofuel and bioenergy

However, forests globally contain 55% of terrestrial Carbon

LCA Model

Biofuels

- cellulosic ethanol
- pyrolysis bio-oil (pyoil)

Bioenergy

electricity from pyoil

Forest Carbon Stocks

- Business as Usual (BAU)
- Intensive Harvesting

CBM-CFS3 model

Table: carbon pools in the CBM-CFS3 and pools recommended by IPCC GPG

CBM-CFS3 pools	IPCC GPG pools
Merchantable & bark (SW, HW)	Aboveground biomass
Other wood & bark (SW, HW)	Aboveground biomass
Foliage (SW, HW)	Aboveground biomass
Fine roots (SW, HW)	Belowground biomass
Coarse roots (SW, HW)	Belowground biomass
Snag Stems DOM (SW, HW)	Dead wood
Snag branches DOM (SW, HW)	Dead wood
Medium DOM	Dead wood
Aboveground fast DOM	Litter
Aboveground very fast DOM	Litter
Aboveground slow DOM	Litter
Belowground fast DOM	Dead wood
Belowground very fast DOM	Soil organic matter
Belowground slow DOM	Soil organic matter

Figure: C flow between biomass and DOM pools in the CBM-CFS3 (adapted from Kurz et al, 2009)

MI aspen harvesting

Table: Current age distribution (in ha) of aspen in Michigan (USDA 2013)

Assumed growth curves of aspen in Michigan

Harvested biomass: Business as usual (BAU) and intensive (INT) harvesting

In the BAU scenario, 7200 ha of aspen is assumed to be harvested every year

INT doubles the harvest to 14400 ha The extra biomass (205 million metric tons over 250 yr) is used for biofuel and bioenergy production.

Total biomass harvested in the BAU and INT scenarios over 250 years

Ecosystem C stored in the BAU and INT scenarios

CO₂ emissions due to dLUC

 $CO_2(t) = \frac{C_{storage(t)}^{BAU} - C_{storage(t)}^{INT}}{\sum_{1}^{t} biofuel} * \frac{44 g CO_2}{12 g C}$

Assuming all C transferred to atmosphere as CO₂

Figure: dLUC of biofuel and bioenergy over 250 years

Life cycle GHG emissions of biofuels and bioenergy

GHG emissions w/o LUC:

- EtOH: -3.74 g CO₂ eq/MJ (GREET 2012)
- Pyrolysis oil: 16.35 g CO₂ eq/MJ (Fan, 2012)
- Pyrolysis electricity: 130.8 g CO₂ eq/kWh (Fan, 2012)

GHG emissions (w/dLUC) of EtOH, pyrolysis oil and electricity over 250 years, comparing to their petroleum counterparts

Bioenergy system total emissions

 $GHG_{tot(t)} = \Delta FC(t) + GHG_{bio(t)}$

(Mckechnie, 2011)

Total GHG emissions of forest-based biofuels system

Closing Remarks

- Data Sources: Inventory databases each have advantages and limitations, but detecting and eliminating errors remains a high priority.
- Accounting: Different regulatory environments will force biofuel LCA practitioneers to meet evolving methodology constraints
- System Boundary: The path to biofuel sustainability will involve ever broader system scope and boundaries in biofuel LCA.