

Panel: Feedstock, Conversion and Innovation: Beyond 2030

Aidan Garcia, Manuel Garcia-Perez, Washington State University

CAFFI Biennial General Meeting, Washington DC, June 1-3, 2022

SAF Production: A Problem with Constrains

Motivations and Background

- A sustainable fuel roadmap is a major goal of ASCENT
- Full TEAs represent years of specialized work
- Simpler production cost (PC) heuristics allow easier initial assessment

Lange has proposed simpler models:

$$C_{prod}$$
 (\$\frac{t}{ton}\$) \approx \frac{C_{feed} + C_{conv}}{yield}

- Conversion costs range from 100- $400 (\frac{\$}{ton})$
- Previous work explored further
 - Concluded minimum yield of 60% for profitability (Tanzil et al., 2020)
- Current lignocellulosic SAF C_{prod} range from 2000-5000 \$/ton

Technology-Agnostic Framework

Resource Cost	Flowrate (tons)
$C_b = 70 / \text{ton}$	m_b
$C_{NG} = 193 \ \text{/ton}$	m_{NG}
$C_{H_2} = 4000 \text{/ton}$	m_{H_2}
$C_{power} = 21.1 \text{ $/GJ}$	W_{elec}/m_{prod} $(\frac{GJ}{ton})$
$C_{O_2} = 40 \text{/ton}$	m_{O_2prod}
C_{prod} (\$/ton)	m_{prod}

$$C_{prod} = \frac{(C_b + C_{conv}) \cdot m_b + C_{NG} \cdot m_{NG} + C_{H_2} \cdot m_{H_2} - C_{O_2} \cdot m_{O_2prod}}{m_{prod}} + (C_{power} + C_{conv_{elec}}) \cdot \frac{W_{elec}}{m_{prod}}$$

Data Selection and Correlation

- 50 Datapoints from 8 studies
 - 28 used to fit base PC calculation
- Fermentation, gasification, pyrolysis, lipid hydrogenation, and electro-fuel processes included
- DAC, cellulosic biomass, lipids, and natural gas feedstocks
- Uncertainty of \$615/ton
 - Reasonable for economic analysis 30% error the norm

Fitted Model

$$C_{prod} = \frac{(C_b + \$317) \cdot m_b + C_{NG} \cdot m_{NG} + C_{H_2} \cdot m_{H_2} - C_{O_2} \cdot m_{O_2prod}}{m_{prod}} + (C_{power} + 39) \cdot \frac{W_{elec}}{m_{prod}}$$

- \$317/ton consistent with values in chemical industry (100-300 \$/ton) (Lange, 2019)
- \$39/GJ approximates the levelized cost of electrolysis
- All other variables obtained from cost data

Incentives

- Highly volatile
- Incentives can total over 100% of the fuel price
- Best approached as a sensitivity analysis
- By developing conversion constants, the effect of incentives on fuel price can be predicted despite the lack of fixed incentives

Application: Purely Stoichiometric Models

Current Commercial Technologies

Yield = 0.09 - 0.23MFSP = \$2050-5190/ton

All O removed as H₂O with

internal H₂ production

All O removed as CO₂

Yield = 0.34 PC = \$1,195/ton CI = 3.2 gCO2/MJ RIN Effect = \$605/ton SPC = \$590/ton

All O removed as O₂ via electrolysis

Yield = 1.22 PC = \$434/ton CI = 49 gCO2/MJ RIN Effect = \$64/ton SPC = \$370/ton Yield = 0.53 PC = \$1,523/ton CI = 11 gCO2/MJ RIN Effect = \$605/ton SPC = \$918/ton

¹Yields Defined on biomass basis (tons distillate/tons biomass) ²Cl calculated using WA average grid footprint (27 g/MJ)

PC: Production Cost

SPC: Subsidized production cost

All O removed as H₂O with external H₂

Yield = 0.55 PC = \$762/ton CI = 25 gCO2/MJ RIN Effect = \$393/ton SPC = \$369/ton

All O removed as O₂ via electrolysis + CH₄ addition

Yield = 0.76 PC = \$1,177/ton CI = 29 g CO2/MJ RIN Effect = \$393/ton SPC = \$784/ton

Application: Purely Stoichiometric Models

All O removed as H₂O with external H₂

PC = \$762/ton

CI = 25 gCO2/MJ

SPC = \$369/ton

RIN Effect = \$393/ton

All O removed as H₂O with internal H₂ production

All O removed as H₂O with internal H₂ production + C sequestration

Yield = 0.55 ton fuel/ton biomass

Yield = 1.22 ton fuel/ton biomass

PC = \$434/ton CI = 49 gCO2/MJ RIN Effect = \$64/ton

SPC = \$370/ton

biomass

Carbon sequestration

Yield = 0.56 ton fuel/ton biomass
Char commercialized at \$ 300/ton
PC = \$667/ton
CI = 11 gCO2/MJ
RIN Effect = \$300/ton
SPC = \$366/ton

There are several technological solutions that could be viable depending on the trade-off between Economic Advantages (strongly associated with Fuel Yield) and Environmental Advantages (strongly linked with Carbon Intensity).

New models are possible

Balance will depend on regulatory frame + incentive levels

FUTURE WORK: TO STUDY THE IMPACT OF CHEAP NON-RENEWABLE SOURCES OF C (SUCH AS PLASTICS) TOGETHER WITH CO₂ UTILIZATION AND CARBON SEQUESTRATION ON THE OVERALL VIABILITY OF SAF TECHNOLOGIES AND THE IMPACT OF INCENTIVE LEVELS!

Thank you very much!

- Contact Information:
- Manuel Garcia-Perez: e-mail: mgarcia-perez@wsu.edu

