

NASA Aeronautics Six Strategic Thrusts

Safe, Efficient Growth in Global Operations

 Enable full NextGen and develop technologies to substantially reduce aircraft safety risks

Innovation in Commercial Supersonic Aircraft

Achieve a low-boom standard

Ultra-Efficient Commercial Vehicles

 Pioneer technologies for big leaps in efficiency and environmental performance

Transition to Low-Carbon Propulsion

• Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology

Real-Time System-Wide Safety Assurance

 Develop an integrated prototype of a real-time safety monitoring and assurance system

Assured Autonomy for Aviation Transformation

Develop high impact aviation autonomy applications

www.nasa.gov

Sustainable Alternative Jet Fuels – Strategic Relevance

Ultra-Efficient Commercial Vehicles

Efficiency (use less energy)

Emissions (use less energy)

Noise (less perceived noise)

Airframe

Propulsion – Advanced Gas Turbines and Propulsors

Vehicle System Integration

Fu<mark>el F</mark>lexible Advanced Gas Turbines

Small Core

Fuel Flexible Hybrid Systems

Transition to Low-Carbon Propulsion

Aviation Alternative Fuels (Drop-In)

Reduce specific carbon (use cleaner energy)

Clean, compact combustion

Gas turbines needed for foreseeable future

Alternative Energy/Power Architectures

Energy sector convergent technology*

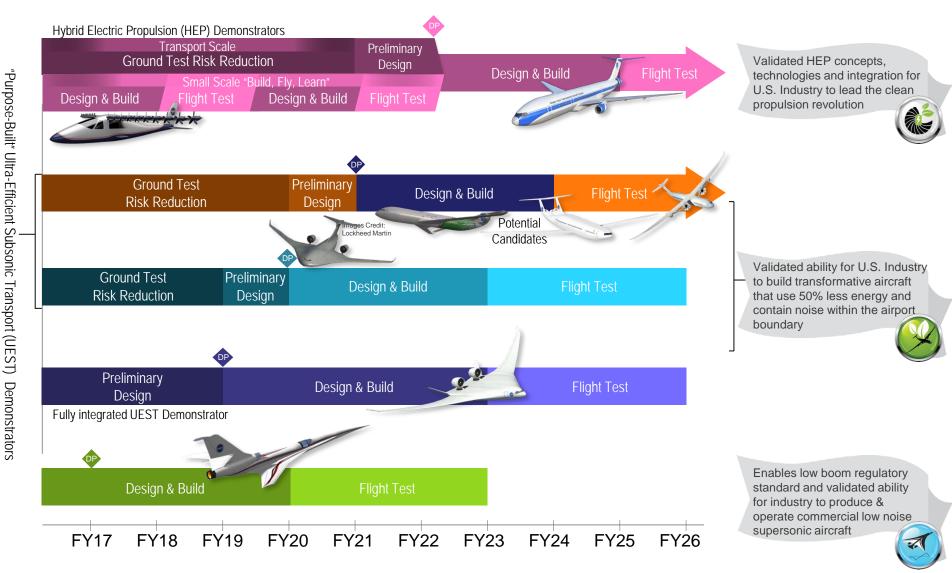
Promise of cleaner energy

Potential for vehicle system efficiency gains (use less energy)

Leverage advances in other transportation sectors

Address aviation-unique challenges (e.g. weight, altitude)

Recognize potential for early learning and impact on small aircraft



New Aviation Horizons Flight Demo Plan

FY17 Budget Request

www.nasa.gov

4

NASA Response to Community Drivers Transition to Low-Carbon Propulsion

Community

2015 2025 2035

Introduction of Low-Carbon Fuels for Conventional Engines and Exploration of Alternative Propulsion Systems Initial Introduction of Alternative Propulsion Systems

Introduction of Alternative Propulsion Systems to Aircraft of All Sizes

NASA Strategies

Sustainable Alternative Jet Fuels (drop-in)

Propulsion Systems (Energy/Power Arch)

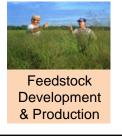
Explore and demonstrate combustor concepts that exploit future alternative fuels

Characterize the performance and emissions of an increasing spectrum of alternative jet fuels in advanced combustors

Advance scientific understanding relating fuels to combustion to emissions to atmospheric impact

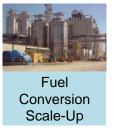
Explore and demonstrate vehicle integration synergies enabled by electrified aircraft propulsion

Enable increasingly electrified aircraft propulsion systems with minimal change to aircraft outer mold lines


Gain experience through integration and demonstration on progressively larger platforms

www.nasa.gov

Federal Alternative Jet Fuel Strategy Fuel Development Path



Federal Partner Agency Contributions

DOC	Χ				X
DoD			X	Х	
DOE	X	X	X		X
DOT				Х	X
EPA					Х
NASA				Х	
NSF	Х	Х	X		
USDA	Х	Х	X		X

Diverse industry contributions along full development path

Academia contributions in low TRL and FRL*

A Vision for the Future of Civil Aviation

- There will be a radical increase in new and cost-effective uses of aviation
- The skies will accommodate thousands of times the number of vehicles flying today
- Travelers will have the flexibility to fly when and where they want in a fraction of the time that it takes today
- All forms of air travel will be as safe as commercial air transport is today
- Subsonic transports will remain the backbone of long-haul global and domestic travel
- Significantly reduced carbon and noise footprints from aviation

Low-carbon propulsion –

- will be designed into vehicles of all sizes and missions
- will have its largest impact on aviation's carbon footprint via subsonic transports
- will enable new vehicles that create economic benefit for unique missions/services.

Sustainable alternative jet fuels will be the norm.

www.nasa.gov