

ENERGY Energy Efficiency & Renewable Energy

CAAFI-CORE Jet Fuel Workshop DOE Aviation Overview April 28, 2016 Zia Haq

1 | Bioenergy Technologies Office eere.energy.gov

Bio-Energy Technology Office Core Focus Areas

Program Portfolio Management

- Performance Validation and Assessment Planning Systems-Level Analysis
 - MYPP • Merit Review • Quarterly Portfolio Review Peer Review
 - Competitive Non-competitive • Lab Capabilities Matrix

Research, Development, Demonstration, & Market Transformation

Feedstock Supply & Logistics R&D

- **Terrestrial**
- Algae
- **Product Logistics Preprocessing**

Conversion R&D

- **Biochemical**
- **Thermochemical**
- Deconstruction
- Biointermediate
- **Upgrading**

Demonstration & Market Transformation

- **Integrated Biorefineries**
- **Biofuels** Distribution Infrastructure

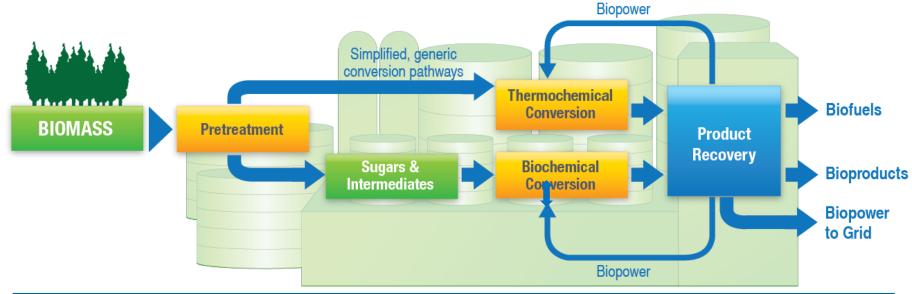
Cross Cutting

Sustainability

- Sustainability **Analysis**
- Sustainable System Design

Strategic Analysis

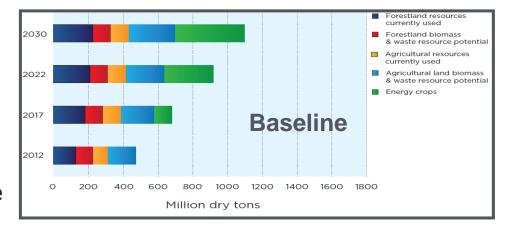
- Technology and Resource Assessment
- Market and **Impact Analysis**
- Model Development & Data compilation


- **New Communications Vehicles & Outlets**
- Awareness and Support of Office
- Benefits of Bioenergy/

Bioproducts

Reducing Risk Along the Supply Chain

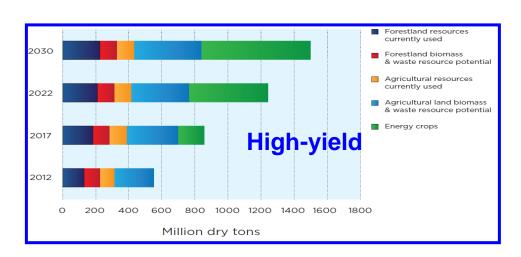
- Technical, construction, operational, financial and market risk reduction
- Demonstration through greater process integration and scale


Key Challenges							
Biomass	Pretreatment	Conversion	Product				
Reliable supplyConsistent qualityAffordable delivery	 Biomass feeding, sizing and moisture Solids handling Construction materials 	 Products Yields Construction materials Catalysts Fermentation organisms	SeparationsCatalytic upgradingRecycle loops				

DOE works to address risks and reduce costs across the supply chain

Biomass Resource Assessment - U.S. Billion-Ton Update

Baseline scenario


- Current combined resources from forests and agricultural lands total about 473 million dry tons at \$60 per dry ton or less.
- By 2030, estimated resources increase to nearly 1.1 billion dry tons.

High-yield scenario

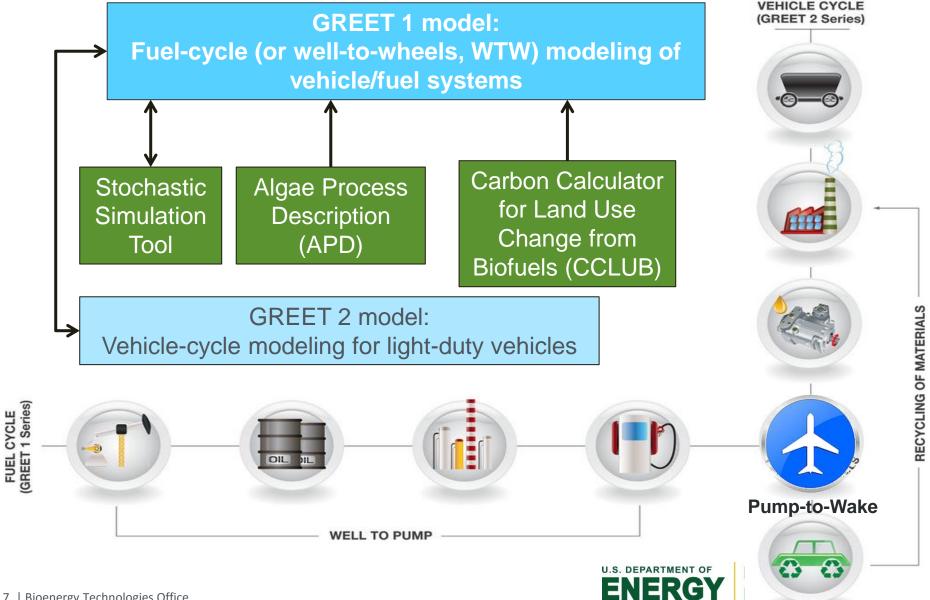
- By 2030, total resource ranges from 1.4-1.6 billion dry tons annually.
- No high-yield scenario was evaluated for forest resources.

Data is publicly available on the Bioenergy Knowledge Discovery Framework https://www.bioenergykdf.net/

Lab & Bench Scale R&D – Aviation Highlights

- Focus on biofuels catalyst development at national labs, e.g.:
 - PNNL Alcohol to Jet
 - NREL DME to branched paraffins
 - ORNL dilute Alcohol to Jet
 - ANL Catalyst characterization
- Focus on industrial partnerships, e.g:
 - Vertimass
 - Virent
 - Lanzatech
 - Kiverdi

Defense Production Act (DPA) Initiative


In September 2014, 3 projects were selected under the DPA Initiative to build commercial biorefineries to produce:

- Drop-in fuels for military applications
- Domestic fuels from non-food biomass feedstocks
- Cost-competitive biofuels (w/o subsidies)
- Production anticipated to begin in 2018

Company	Location	Feedstock	Capacity	Groundbreaking	Off-Take Agreements
E EMERALD BIOFUELS	Gulf Coast	Fats and Greases	82.0 MM g/y	TBA	TBD
Fulcrum	McCarran, NV	MSW	10.0 MM g/y	Fall of 2015	UNITED CATHAY PACIFIC
RED ROCK BIOFUELS	Lakeview, OR	Woody Biomass	12.0 MM g/y	ТВА	southwest FedEx.

The GREET™ (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model

Aviation Fuel Options in GREET1 2014

Fuels and Feedstocks

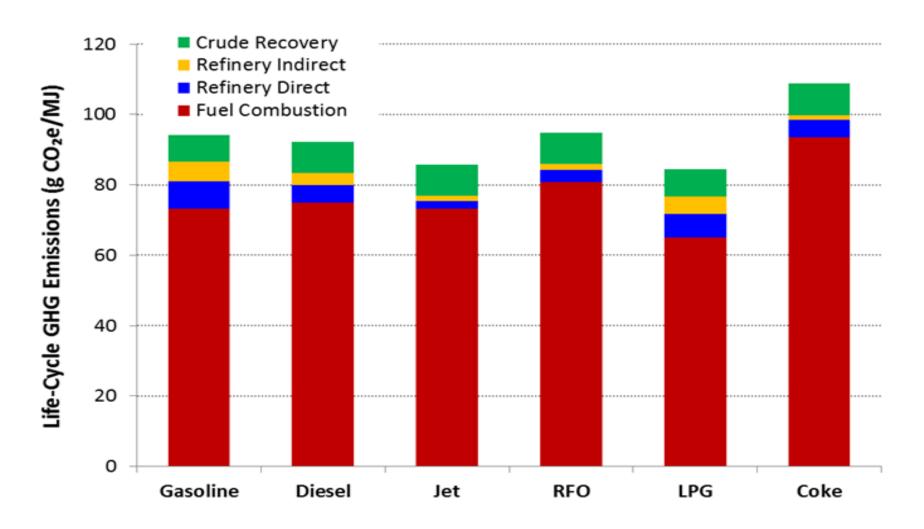
- ☐ Petroleum Jet Fuel
 - Conventional Crude
 - Oil Sand

- Pyrolysis Oil Jet Fuel
 - Crop Residues
 - Forest Residues
 - Dedicated Energy Crops
- Hydrotreated Renewable Jet Fuel
 - Soybeans
 - Palm Oil
 - Rapeseeds
 - Jatropha
 - Camelina

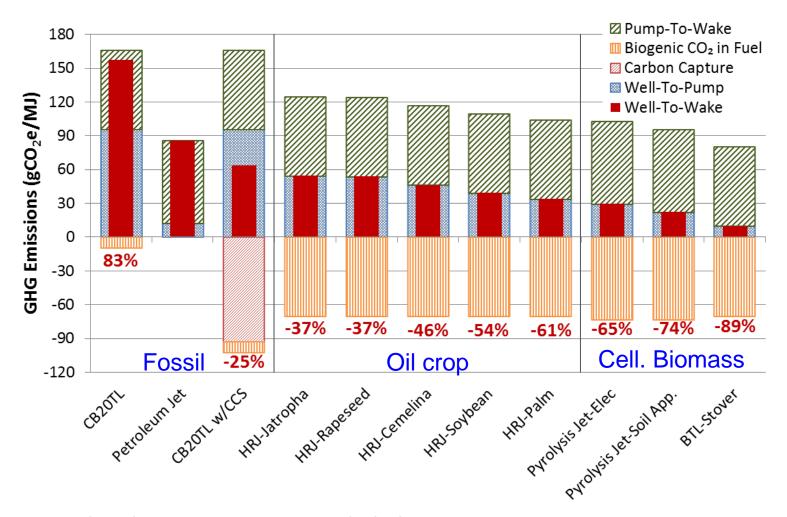
- Alcohol-To-Jet
 - Corn
 - **Crop Residues**
 - **Forest Residues**
 - **Dedicated Energy Crops**

- Algae
- ☐ Fischer-Tropsch Jet Fuel
 - North American Natural Gas
 - Non-North American Natural Gas
 - Renewable Natural Gas
 - **Shale Gas**
 - Biomass via Gasification
 - Coal via Gasification
 - Coal/Biomass via Gasification
 - Natural Gas/Biomass via Gasification

Aircraft Types


- **Passenger Aircraft**
 - Single Aisle
 - Small Twin Aisle
 - Large Twin Aisle
 - Large Quad
 - Regional Jet
 - Business Jet
- **Freight Aircraft**
 - Single Aisle
 - Small Twin Aisle
 - Large Twin Aisle
 - Large Quad
- LCA Functional Units
 - Per MJ of fuel
 - Per kg-km
 - Per passenger-km

With data from


DOT Volpe Center

LCA GHG Emissions of Petroleum Fuels

Well-to-Wake GHG Emissions of Alternative Jet Fuels

- LUC-related emissions are not included
- Other key factors: Technology readiness level (TRL), production costs, resource availability and fuel types

Renewable Energy