U.S. Jet Fuel Production Potential from Wastes Summation: Wet wastes, FOGs, MSW, Ag & Forestry Residues, and Industrial Gases

Wet Wastes (HTL): 3.8 Billion gpy

FOGs (HEFA): 0.8 Billion gpy

MSW (FT): 3.1 Billion gpy

Agriculture Residues (FT): 6.1 Billion gpy

Forestry Residues (FT): 0.4 Billion gpy

Industrial Gases (ATJ): 1.3 Billion gpy

Current Total Potential ~ 15.6 Billion gallons of jet fuel per year (approx. 59% of 2018 U.S. demand)

U.S. Jet Fuel Production Potential from Wastes Wet Wastes – converted, e.g., via HTL

3.8 B gpy*

- * Animal manure 2.7 B gpy
- * Wastewater sludge 1.1 B gpy

WtE HTL Bio-Crude Resource Assessment

*Removed FOGs and Food Waste from jet fuel calculation – FOGS assumed to go to HEFA and food waste to MSW/FT Assumes a nearly 100% conversion rate from biocrude to jet fuel

U.S. Jet Fuel Production Potential from Wastes FOGs-converted, e.g., via HEFA

823 M gpy*

(estimates vary)

* Inedible fats, oils, and greases (FOGs) (5.92M short tons/y)

https://www.nrel.gov/docs/fy18osti/68470.pdf

U.S. Jet Fuel Production Potential from Wastes MSW – converted, e.g., via FT

3.1B gpy

137.7 million tons sent to landfill in 2015

Total MSW Landfill by Material, 2015 (137.7 million tons)

Category	Potential Jet Fuel Production From Landfill (million gallons)
Paper	499
Wood	234
Food	332
Yard Trimmings	137
Plastics	1,527
Rubber, Leather, Textiles	733
TOTAL	3,462*

^{*}Assumes all landfilled wastes are recovered and utilized

U.S. Jet Fuel Production Potential from Wastes Agricultural Residues – converted, e.g., via FT or ATJ

6.1B gpy

- Corn, wheat and soy 90% of cropland
- * USDA 2019/2020 Projections for domestic production:
 - * Corn 14,930 million bushels
 - * Wheat 2,060 million bushels
 - * Soy 4,090 million bushels

U.S. Jet Fuel Production Potential from Wastes Forestry Residues – converted, e.g., via FT

381M gpy

- * 70% of residues already diverted
- * Total Unused Recoverable Residues = 15,334.362 thousand short tons

Figure 4. Percent of total land area that is forested, by State.

Figure 30. Growing-stock removals in the United States by species group, region, and year, 1952 to 2011.

U.S. Jet Fuel Production Potential from Wastes

Industrial Gases - converted, e.g., via gas fermentation followed by ATJ

1.3B gpy*

- Steel Mills 820M gpy
- Ferro-Alloy 20M gpy
- Refineries 500M gpy

Fossil Fuel Power Plants in the U.S. Two most prominent sources are coal (black) and natural gas (orange)

https://www.visualcapitalist.com/mapped-every-power-plant-in-the-united-states/

https://www.ft.com/content/52552bf8-c024-11e9-89e2-41e555e96722

CAAFI

.

^{*} Communication with Dave Meyer, LanzaTech, August 5, 2019

For additional detail, please contact us at info@caafi.org

This is a working document and subject to change.